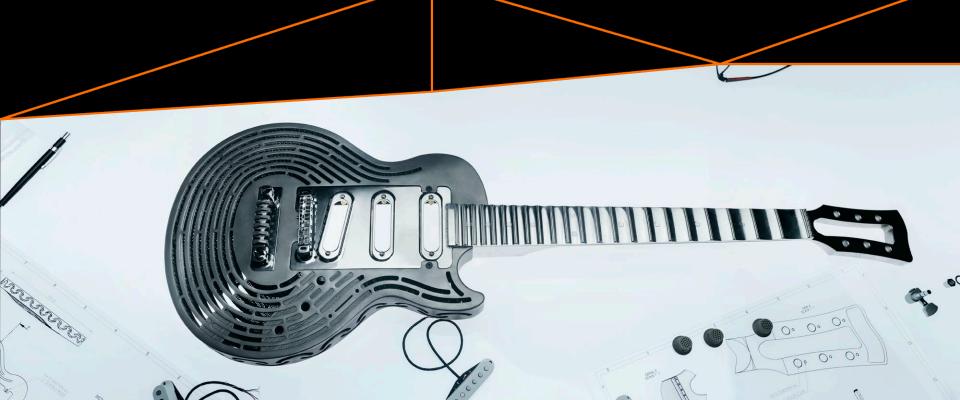
TITANIUM POWDER BY SANDVIK THE ADDITIVE ADVANTAGE

22 OCTOBER, 2019 SANDVIKEN, SWEDEN 80% REDUCED WEIGHT

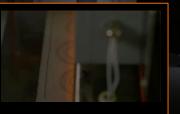
> 200% INCREASED PRODUCTIVITY

AGENDA


TITANIUM POWDER BY SANDVIK – THE ADDITIVE ADVANTAGE

13:30 - 13:45	SAFETY FIRST AND WELCOME!	Kristian Egeberg
13:45 - 14:10	INTRODUCTION TO SANDVIK – AND TITANIUM AS AN ELEMENT	Mikael Schuisky
14:10 - 14:35	TITANIUM AND NICKEL POWDER PRODUCTION BY SANDVIK	Martin Mueller
14:35 - 15:00	TITAINUM AND NICKEL POWDER BY SANDVIK – THE ADDITIVE ADVANTAGE	Keith Murray
15:00 - 15:20	SWEDISH "FIKA"	All
15:20 - 15:40	AM-PROCESSING OF TITANIUM	Harald Kissel
15:40 - 16:10	BEAMIT – EXPERIENCE FROM AM OF TITANIUM COMPONENTS	Michele Antolotti and Martina Riccio
16:10 - 16:25	TITANIUM COMPONENTS FOR GSD E-BIKES	Zach Krapfl
16:25 - 16:40	LIGHTWEIGHT COROMILL [®] 390	Matts Westin
16:40 - 16:55	OSSDSIGN – IMPLANTS FOR BONE REGENERATION	Kajsa Björklund
16:55 - 17:10	SWISS CENTER OF MANUF. TECHNOLOGIES FOR MEDICAL	Harald Kissel
17:10 - 17:30	SUMMARY, CONLCLUSIONS AND KEY TAKE-AWAYS	Mikael Schuisky & All
18:00	DINNER @ BRUKSMÄSSEN	All

INTRODUCTION TO SANDVIK AND SANDVIK ADDITIVE MANUFACTURING


LEADING AND WELL ESTABLISHED CAPABILITIES

ACROSS THE AM VALUE CHAIN

MATERIALS

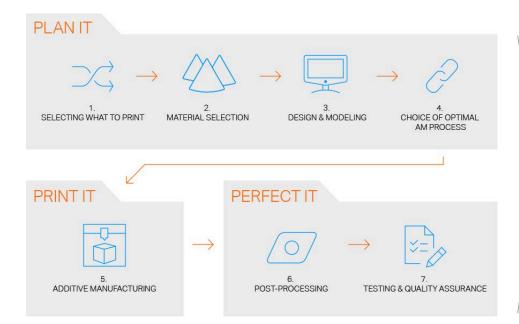
- · World leader in metallurgy
- Powder expert
- Leading in metal powder for AM
- Widest range of Osprey[™] AM-alloys

MANUFACTURING

- 3D design
- Several AM processes
- Center of Digital Excellence

POST PROCESSING

- World leader in metal cutting
- Sintering and HIP
- Other post processing



RELATED CAPABILITIES

- Testing and characterization
- Traceability and documentation
- Component know-how
- Customer base
- Distribution network

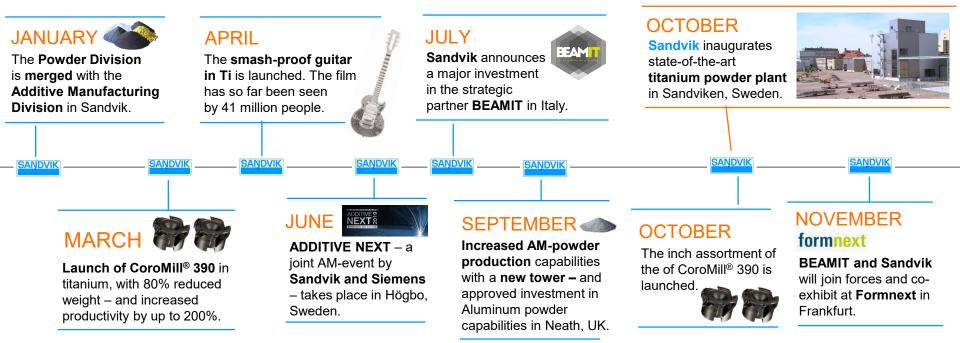
ADDITIVE BY SANDVIK PLAN IT – PRINT IT – PERFECT IT

OUR OFFERING:

Advisory services

We take you from idea to prototype – or serial production.

From rapid prototyping to serial production, we offer full service production of your component.


Metal powder

We offer the widest range of powder alloys for additive manufacturing around and can even customize materials.

2019 SANDVIK ADDITIVE MANUFACTURING

INTRODUCTION: TITANIUM AS AN ELEMENT

MIKAEL SCHUISKY VP AND HEAD OF R&D AND OPERATIONS SANDVIK ADDITIVE MANUFACTURING 80% REDUCED WEIGHT


> 200% INCREASED PRODUCTIVITY

PHYSICAL PROPERTIES OF TITANIUM

- Melting Point
- Boiling point
- Density
- Heat of fusion
- Heat of Vaporization
- Molar heat capacity

3287 °C 4.506 g/cm³ 14.15 kJ/mol 452 kJ/mol 25.06 J/(mol*K)

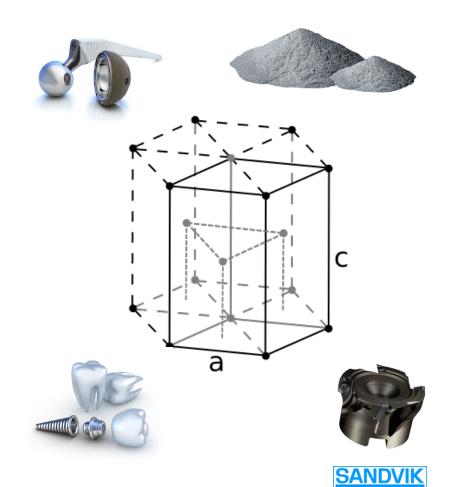
1668 °C

ATOMIC PROPERTIES OF TITANIUM

- Oxidation states (an amphoteric oxide)
- Electronegativity
- Atomic radius
- Covalent radius
- Natural occurring Isotopes

1.54 (Pauling Scale) 147 pm 160±8 pm ⁴⁶Ti, ⁴⁷Ti, <u>⁴⁸Ti, ⁴⁹Ti & ⁵⁰Ti</u>

-2, -1, +1,+2,+3, <u>+4</u>



SPECTRAL LINE OF TITANIUM

OTHER PROPERTIES TITANIUM

- Hexagonal closed packed
- Thermal expansion
- Thermal conductivity
- Electrical resistivity
- Youngs modulus
- Shear modulus
- Bulk modulus
- Vickers hardness

(hcp)
8.6 μm/(m*K)
21.9 W/(m*K)
420 nΩ*m
116 GPa
44 GPa
110 GPa
830-3420 MPa

THE HISTORY OF TITANIUM

Titan1961

Clergymen and amateur geologist **William Gregor** successfully isolated titan oxide from the mineral Ilmenite (FeTiO3).

1795 MARTIN HEINRICH KLAPROTH

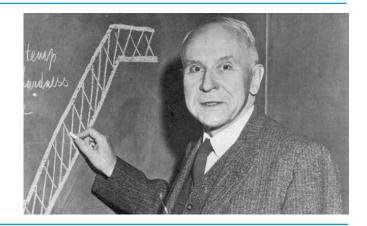
Discovered the same material in mineral Rutile (TiO2). He named it **Titanium** after the Titans of Greek mythology.

1825 JÖNS JACOB BERZELIUS

Metallic titanium was **first produced in an un-pure form** by the Swede Jöns Jacob Berzelius.

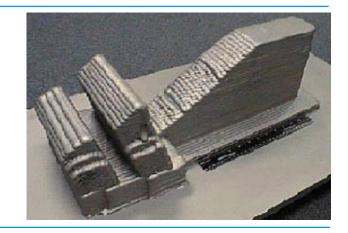
Pure metallic titanium (99.9%) was first prepared in 1910 at Rensselaer Polytechnic Institute by heating $TiCl_4$ with sodium at 700–800 °C under great pressure in a sealed batch process today known as **the Hunter Process**.

TiCl4(g) + 4 Na(s) => Ti(s) + 4 NaCl(s)



The **Kroll process** is a pyrometallurgical industrial process used to produce metallic titanium.

FeTiO3 + C => Fe + TiO2 + CO
 TiO2 + 2C +2Cl2 => TiCl4 + 2CO
 TiCl4 + 2 Mg => Ti + 2 MgCl2



AeroMet a subsidiary of MTS Systems Corp developed a process call **laser additive manufacturing** (LAM) which used a high power laser and **titanium powders**.

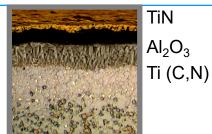
> "We're one of the first wave of companies in the new industry of direct-metal deposition," said Frank Arcella, president of AeroMet. "The unique niche we hold is that titanium is so hard to work with." MINNEAPOLIS/ST PAUL BUSINESS JOURNAL MAY 24TH, 1998.

PREVIOUS TITANIUM APPLICATIONS BY SANDVIK

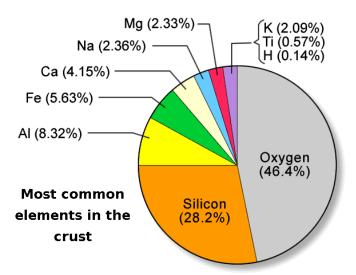
TITANIUM

USE WITHIN SANDVIK

1964 Sandvik starts the production alloys of reactive metals i.e. Zr and Ti.

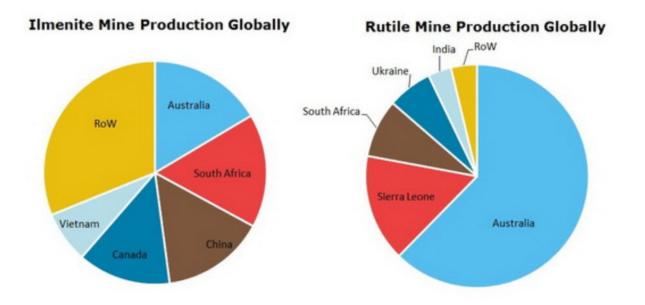

At Sandvik we since the **1980's** produces Ti tubes for aerospace applications.

Ti is use as minor alloying element by Sandvik in several alloys for instance 18Ni300. **1969** Sandvik Coromant introduced TiC coated inserts and today hard and wear resistant titanium coatings like TiAIN, Ti(C,N) and TiN are used on most inserts.


TITANIUM ABOUNDANCE

THE 9TH MOST COMMON ELEMENT IN THE EARTH CRUST (0.57%)

- Primarily found in the minerals
 - Rutile (TiO₂)
 - Ilmenite (FeTiO₃)
 - Sphene (CaTiSiO₅).



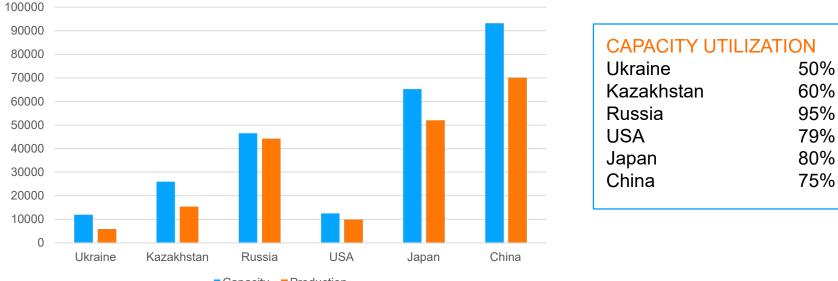
TOP PRODUCERS OF TI MINERALS

PRODUCTION OF TITANIUM SPONGE

Metallic titanium sponge is today mainly produced with the Kroll process.

1) FeTiO3 + C => Fe + TiO2 + CO

2) TiO2 + 2C +2Cl2 => TiCl4 + 2CO


3) TiCl4 + 2 Mg => Ti + 2 MgCl2

TITANIUM SPONGE PRODUCTION (2018)

Titanium Sponge Capacity vs Production

Capacity Production

SANDVIK